Microfluidic tool box as technology platform for hand-held diagnostics.

نویسندگان

  • Michael J Pugia
  • Gert Blankenstein
  • Ralf-Peter Peters
  • James A Profitt
  • Klaus Kadel
  • Thomas Willms
  • Ronald Sommer
  • Hai Hang Kuo
  • Lloyd S Schulman
چکیده

BACKGROUND Use of microfluidics in point-of-care testing (POCT) will require on-board fluidics, self-contained reagents, and multistep reactions, all at a low cost. Disposable microchips were studied as a potential POCT platform. METHODS Micron-sized structures and capillaries were embedded in disposable plastics with mechanisms for fluidic control, metering, specimen application, separation, and mixing of nanoliter to microliter volumes. Designs allowed dry reagents to be on separate substrates and liquid reagents to be added. Control of surface energy to +/-5 dyne/cm2 and mechanical tolerances to < or = 1 microm were used to control flow propulsion into adsorptive, chromatographic, and capillary zones. Fluidic mechanisms were combined into working examples for urinalysis, blood glucose, and hemoglobin A(1c) testing using indicators (substances that react with analyte, such as dyes, enzyme substrates, and diazonium salts), catalytic reactions, and antibodies as recognition components. Optical signal generation characterized fluid flow and allowed detection. RESULTS We produced chips that included capillary geometries from 10 to 200 microm with geometries for stopping and starting the flow of blood, urine, or buffer; vented chambers for metering and splitting 100 nL to 30 microL; specimen inlets for bubble-free specimen entry and containment; capillary manifolds for mixing; microstructure interfaces for homogeneous transfer into separation membranes; miniaturized containers for liquid storage and release; and moisture vapor barrier seals for easy use. Serum was separated from whole blood in <10 s. Miniaturization benefits were obtained at 10-200 microm. CONCLUSION Disposable microchip technology is compatible with conventional dry-reagent technology and allows a highly compact system for complex assay sequences with minimum manual manipulations and simple operation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow

A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...

متن کامل

Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications

A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents...

متن کامل

Centrifugal microfluidics for biomedical applications.

The centrifugal microfluidic platform has been a focus of academic and industrial research efforts for almost 40 years. Primarily targeting biomedical applications, a range of assays have been adapted on the system; however, the platform has found limited commercial success as a research or clinical tool. Nonetheless, new developments in centrifugal microfluidic technologies have the potential ...

متن کامل

Integrated microfluidic platform for oral diagnostics.

While many point-of-care (POC) diagnostic methods have been developed for blood-borne analytes, development of saliva-based POC diagnostics is in its infancy. We have developed a portable microfluidic device for detection of potential biomarkers of periodontal disease in saliva. The device performs rapid microfluidic chip-based immunoassays (<3-10 min) with low sample volume requirements (10 mi...

متن کامل

Multidisciplinary Role of Microfluidics for Biomedical and Diagnostic Applications: Biomedical Microfluidic Devices

Life scientists are closely working with engineers to solve biological and biomedical problems through the application of engineering tools. For engineers involved in this collaborative work, new knowledge is created in their own disciplines. For example, the science and technology at the interface of biomedical sciences and microfluidics has played a significant role in ushering in recent adva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical chemistry

دوره 51 10  شماره 

صفحات  -

تاریخ انتشار 2005